ЗАО «Завод электротехнического оборудования»

УСТРОЙСТВА КОМПЛЕКТНЫЕ РАСПРЕДЕЛИТЕЛЬНЫЕ КРУ ZETO на 6(10) КВ

Содержание

1. Область применения	2
2. Бесперебойность энергоснабжения и полная безопасность	5
3. Комплексное решение	6
3.1 Контроль и управление	6
3.2 Управление передачей электроэнергии от А до Я	6
3.3 Защита и управление	7
3.4 Технические решения по обеспечению контроля и управления	7
3.5 Релейная защита	 9
3.6 Таблица выбора РЗА	9 11
3.7 Структура цифровой подстанции 6(10) 3.8 Возможность интеграции в системы комплексных АСУ ТП	12
3.9 Предоставляемые услуги	16
3.10 Сертифицированное качество: соответствие стандартам	17
4. Описание	18
5. Технические характеристики	23
6. Энергоэффективность и энергосбережение	24
7. Защита персонала	25
7.1 Стойкость ячеек КРУ ZETO к воздействию внутренней дуги	25
7.2 Установка ячеек КРУ ZETO	25
8. Простота обслуживания	28
9. Выбор ячеек	30
10. Установка ячеек	41
11. Выключатели серии VF 12	44
12. Выключатели серий VD4 и HD	45
13. Выключатели серии EVOLIS и LF	46
14. Выключатели серии ЗАЕ SION	47
15. Выключатели серии ВВ/TEL-10	48
16. Выкатные элементы	49
17. Шинные мосты и вводы	50
18. Измерительные трансформаторы	53
18.1 Трансформаторы тока	53
18.2 Трансформаторы тока нулевой последовательности	54
19. Силовые трансформаторы	55
19.1 Трансформаторы напряжения	55
19.2 Трансформаторы собственных нужд	56

Область применения

Пакет предложения системы интеллектуального распределения электроэнергии на базе ячейки КРУ ZETO

Система предназначена для защиты и управления сетями высокого напряжения и включает в себя оборудование трех уровней:

Ячейка **КРУ ZETO**

- КРУ высокого напряжения и присоединительные устройства;
- трансформаторы тока, напряжения и т.д;
- выключатели вакуумные и элегазовые;
- контакторы вакуумные;
- вспомогательные устройства (ОПН, заземляющие разъединители);

Блоки защиты, контроля и управления

- 🗲 для каждой ячейки:
 - устройства РЗиА;
 - системы спроектированные по техническому заданию Заказчика;
- 4 для ПС в целом:
 - системы собственных нужд (ЩСН/ ПСН) и оперативного тока (АУОТ/ СОПТ);
 - системы РЗиА;
 - панели и щиты АСУ и ТМ;
 - панели и щиты АИИСКУЭ;
 - панели связи;
 - APM диспетчера;
 - межсистемные связи.

Ячейки КРУ ZETO соответствуют всем требованиям к оборудованию для распределения электроэнергии напряжением 6 (10) кВ

Ячейка КРУ ZETO представляет собой КРУ в стальном оцинкованном корпусе, предназначенное для внутренней установки.

КРУ ZETO применяется:

- на подстанциях питающих центров;
- в системе собственных нужд и выделенной мощности электростанций;
- в распределительных сетях энергокомплекса;
- в городских и муниципальных сетях;
- в нефтяной, угольной и газовой промышленности;
- на подстанциях промышленных предприятий.

КРУ ZETO - это:

- готовые, гибкие решения, разработанные с учетом Ваших требований;
- значительное снижение расходов на технической обслуживание;
- сервисное обслуживание по всей России.

Преимущества использования КРУ ZETO:

- 1. Бесперебойность работы Ваших сетей;
- 2. Повышение безопасности;
- 3. Оптимизация капиталовложений благодаря увеличению срока службы Вашей установки;
- 4. Возможность встраивания Вашего распределительного устройства высокого напряжения в цифровую систему мониторинга и управления.

K-IIIУ КРУ I поколения

K-XXVI КРУ II поколения

K-104 КРУ III поколения

KPУ ZETO KPУ IV поколения

Преимущества выбора КРУ ZETO:

- 1. Технические решения, реализованные на основе самых современных концепций;
- 2. Комплексное техническое решение, соответствующее всем международным стандартам, относящимся к оборудованию для питающих центров, распределительных, городских и муниципальных сетей;
- 3. Соответствие российским и европейским стандартам и нормативам;
- 4. Широкий набор типовых проектных решений;

Бесперебойность энергоснабжения и полная безопасность

Ячейки КРУ ZETO разработаны на основе глубокого изучения опыта эксплуатации оборудования предыдущих серий и обеспечивают высокую степень надежности и безопасности ваших распределительных сетей.

Устройство КРУ ZETO объединяет в себе множество технических решений, реализованных на основе испытанных технологий: КРУ с высокими эксплуатационными характеристиками, цифровую защиту, системы контроля и управления, детали корпуса устойчивые к воздействию внутренней дуги.

На всех этапах разработки КРУ ZETO принимает в расчет три основных требования заказчика:

Надежность:

- по каждой характеристике каждого из типоисполнений ячеек серии КРУ ZETO проводились типовые испытания;
- при разработке конструктивных решений использовались методы трехмерного компьютерного моделирования;
- разработка, изготовление и испытание серии КРУ ZETO проводилось в соответствии с требованиями всех российских норм и стандартов.

Эргономика:

- устройство снабжено общедоступным пользовательским интерфейсом;
- все действия отображаются на встроенной мнемосхеме;
- ошибочные действия оператора предотвращаются системой встроенных блокировок;
- блоки защиты РЗиА обеспечивают доступ к информации без применения дополнительных устройств;
- техническое обслуживание сводится к текущей проверке работоспособности, чистке токоведущих частей с периодичностью 3-5 лет;
- устройство легко устанавливается благодаря идентичным размерам всех ячеек и может располагаться вплотную к стенке.

Безопасность:

- все операции с оборудованием, включая доступ в отсек кабельной сборки и отсек сборных шин, осуществляется с фасада ячейки;
- вкатывание и выкатывание ВЭ из шкафа КРУ возможно только при закрытой двери отсека ВЭ;
- на передних панелях ячеек расположены стационарные указатели напряжения;
- заземляющий разъединитель обладает стойкостью к включению на короткое замыкание;
- все ячейки обладают стойкостью к воздействию внутренней дуги;
- возможна опционная установка электроприводов выключателя и заземляющего разъединителя позволяющая производить управление всеми операциями дистанционно;
- возможно применение комбинированной изоляции.

Комплексное решение

Контроль и управление

Оптимизация Вашей системы электроснабжения означает поиск путей снижения прямых и косвенных эксплуатационных расходов и обеспечение бесперебойной подачи электроэнергии. Для достижения этой цели Вам необходима полная информация о работе Вашей электроустановки: схемы защиты, уровень потребления, возникновение неисправностей, значения гармоник.

Управление передачей электроэнергии от A до Я

Эксплуатация и техническое обслуживание.

- информация о работе сети в реальном времени;
- определение мощности;
- профилактическое техническое обслуживание;
- предоставление отчетов.

Обеспечение качества электроэнергии

- упреждающее обнаружение возможных неисправностей;
- диагностика неисправностей;
- контроль токов в нейтрали.

Готовность электроснабжения

- Обеспечение бесперебойности подачи электроэнергии
 - диагностика неисправностей распределительной сети;
 - дистанционное управление распределительной сетью;
 - обнаружение неисправностей;
 - автоматическое восстановление конфигурации после аварии.
- Повышение надежности
 - обнаружение резких отклонений напряжения;
 - автоматический ввод резерва;
 - мониторинг системы защиты;
 - управление схемой нагрузки.

Потребление электроэнергии

- Снижение стоимости электроэнергии
 - управление пиками потребления;
 - оптимизация Вашего контракта на поставку электроэнергии;
 - улучшение коэффициента мощности;
 - автоматический сброс нагрузки.

Сбережение электроэнергии

- анализ эксплуатационных тенденций;
- уведомление пользователя о затратах;
- внутреннее распределение прямых затрат.

Защита и управление

Контроль положения выключателя и заземляющего разъединителя в реальном времени:

- информация о положении выключателя (отключен/включен, отключен релейной защитой);
- информация о положении выкатного элемента (контрольное/рабочее);
- информация о положении 3Р (включен/выключен);
- диагностика повреждений, информация о причинах отключения;
- отражение положения всех аппаратов КРУ на мнемосхеме.

Управление выключателем, выкатным элементом и заземляющим разъединителем:

• дистанционное управление через систему связи ВВ и ЗР (отключен/включен), ВЭ (контрольное/рабочее).

Технические решения по обеспечению контроля и управления

- блоки защиты, контроля и управления для каждой ячейки;
- программные пакеты стандартного автоматизированного управления сетями, предназначенные для управления установкой;
- встраивание ячеек КРУ ZETO во все системы контроля и управления;
- настройка системы в точном соответствии с Вашими требованиями;
- системы оперативного тока;
- щиты собственных нужд;
- шкафы вторичной коммутации.

Релейная защита

Терминалы серии БЭ2502 для защиты и автоматики оборудования 6 - 35 кВ

Релейная защита подстанционного оборудования реализована на базе микропроцессорных терминалов серии БЭ2502.

Терминалы предназначены для выполнения функций релейной защиты, автоматики, управления и сигнализации присоединений с номинальным напряжением сети 6-35 кВ. Они устанавливаются в комплектных распределительных устройствах, в шкафах или на панелях.

Вычислительные возможности устройств, благодаря применению современных сигнальных процессоров, позволяют решить большинство задач релейной защиты и автоматики энергетических объектов.

Терминалы могут объединяться по каналу связи в локальную информационную сеть с использованием интерфейса RS485 или Ethernet. Для взаимодействия с АСУТП используется протокол связи МЭК 60870-5-103.

С помощью внешнего программного обеспечения (комплекса программ EKRASMS) имеется возможность наблюдать текущие значения всех входных сигналов (мониторинг), организовывать базы данных событий и аварийных осциллограмм, изменять уставки, синхронизировать время всех терминалов в сети.

По внешним связям терминалы серии БЭ2502 полностью совместимы с терминалами серии БЭ2704, используемыми в защитах на стороне высокого напряжения.

Уставки защит, база данных аварийного осциллографа хранятся в электронной памяти, информация в которой сохраняется при исчезновении напряжения питания терминала. Текущее состояние элементов световой индикации и база данных регистратора хранятся в энергонезависимой памяти, питаемой от автономного источника питания, информация в которой сохраняется на длительное время при отсутствии напряжения питания терминала.

Терминалы серии ЭКРА 200 предназначены для:

- защиты станционного и подстанционного оборудования генерирующих установок в металлургической и нефтегазовой промышленности, а также для управления и автоматизации;
- комплекса локальной и централизованной противоаварийной автоматики электростанций и подстанций, а также для реализации устройств управления аварийными режимами энергоузлов;
- установки на электрических станциях и подстанциях с целью регистрации аналоговых и логических сигналов при возмущениях, сопровождающих нормальные режимы в энергосистеме;
- управления выключателем и коммутационными аппаратами присоединения, организации оперативных блокировок, сбора и обработки аналоговой и дискретной информации.

Терминалы микропроцессорные серии ЭКРА 200 (исполнения):

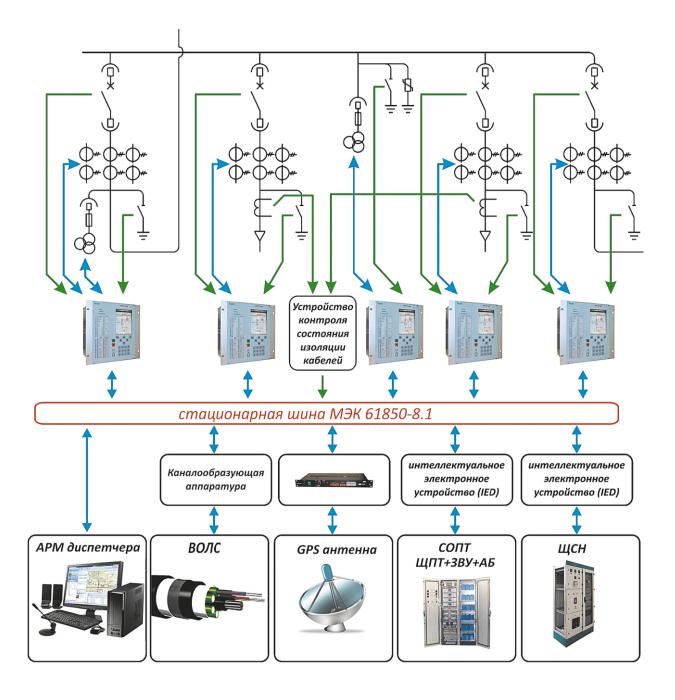
- терминалы защиты ЭКРА 21X(A), предназначенные для защиты станционного и подстанционного оборудования генерирующих установок в металлургической и нефтегазовой промышленности, а также для управления и автоматизации;
- терминалы автоматики ЭКРА 22X(A), предназначенные для комплекса локальной и централизованной противоаварийной автоматики электростанций и подстанций, а также для реализации устройств управления аварийными режимами энергоузлов;
- терминалы регистрирующие ЭКРА 23X(A), предназначенные для установки на электрических станциях и подстанциях с целью регистрации аналоговых и логических сигналов при возмущениях, сопровождающих нормальные режимы в энергосистеме;
- терминалы управления ЭКРА 24Х(А), предназначенные для управления выключателем и коммутационными аппаратами присоединения, организации оперативных блокировок, сбора и обработки аналоговой и дискретной информации.

Таблица выбора РЗА

Терминалы серии БЭ 2502

								В	ЫΠ	олн	няе	МЫ	еф	унк	ци	И								
							Защи	та										A	вто	ма	тик	а		
Тип исполнения терминала		МТЗ с пуском по напряжению напр/ненапр.	Ускорение МТЗ	Авт. загрубление уставки МТЗ	Защита от перегрузки двиг.	Защита от потери нагрузки	3 напр./ненапр.	3 по напряжению . посл.	_		_	_		•)B	АПВ выключателя	АЧР с контр, скорости изм. частоты	Выполнение команд АЧР ЧАПВ и ПАА	0	m	Контр, исправ. ТН	АРН с коррекцией по току нагр.	픙	B
	딾	МТЗ (Š	Авт. устав	3al	3a1	3303	3303 нул.	3MH	3HP	37.	四四四	343	ДТЗ	yPOB	AIIE	AHP (Выпо	ABP	AyB	호	₽ 5	AOCH	ЧАПВ
БЭ 2502 A01XX	<u>.</u>	З ст/3ст	کر ۷	AB YCI	- 3a	. 3aı	ОК 2ст/2ст	330, Hyn	→ 3MF	→ 3HF	<u>-</u>	ЛЗГ	> 3Д3	- -	√ YP(Н 2ст	- AYF	AHF	ABI	∨ AyE	^ 호	- API	V	<u>-</u>
БЭ 2502 A01XX БЭ 2502 A02XX	-		_													_	- A4F				_	- API		
	-	3ст/3ст	٧	٧	-	-		٧	٧	٧	-	-	٧	-	٧	2ст	AHE .		-	٧	٧	-	-	-
БЭ 2502 A02XX БЭ 2502 AO3XX БЭ 2502 A04XX	-	3ст/3ст -/3ст	y y	Y Y	-	-	2ст/2ст	· ·	Y -	Y Y	-	- Y	٧	-	Y Y	2ст	-	y -	- 7	Y Y	· -	-	-	-
БЭ 2502 A02XX БЭ 2502 AO3XX	-	3ст/3ст -/3ст	Y Y	Y Y Y	-	-	2ст/2ст - -	Y - Y	· · · · · · · · · · · · · · · · · · ·	Y Y Y	-	- Y Y	Y Y	-	Y Y Y	2ст - 1ст	-		- Y Y	Y Y Y	- Y	-	-	- - - 1ст
БЭ 2502 A02XX БЭ 2502 AO3XX БЭ 2502 A04XX	-	3ст/3ст -/3ст	Y Y Y	Y Y Y	- - -		2ст/2ст - -	Y - Y	· · · · · · · · · · · · · · · · · · ·	Y Y Y	- - - y	- Y Y	Y Y	-	Y Y Y	2ст - 1ст	-	·	- V V	Y Y Y	- - - -	- - -		- - - 1ст
БЭ 2502 A02XX БЭ 2502 A03XX БЭ 2502 A04XX БЭ 2502 A0501 БЭ 2502 A07XX БЭ 2502 A08XX	-	3cт/3cт -/3cт 3cт/3cт -	Y Y Y -	Y Y Y -	-	-	2cт/2cт - - -	Y - Y	y - y 3	Y Y - -	- - - - -	- y y - -	Y Y - -		Y Y Y -	2ст - 1ст -	- - - 2ст	- - -	- V V	Y Y Y -	Y - Y	- - - - - y	-	- - - 1ст
БЭ 2502 A02XX БЭ 2502 A03XX БЭ 2502 A04XX БЭ 2502 A0501 БЭ 2502 A07XX	-	3cт/3cт -/3cт 3cт/3cт -	Y Y Y -	Y Y Y -	- - - - - y	- - - - - y	2cт/2cт - - -	Y - Y	y - y 3	Y Y - -	- - - - - -	- y y - -	Y Y - - Y		Y Y - - Y	2ст - 1ст - -	- - - 2ст	- - -	- V V -	Y Y - - Y	Y - Y	- - - - - -		- - - 1ст

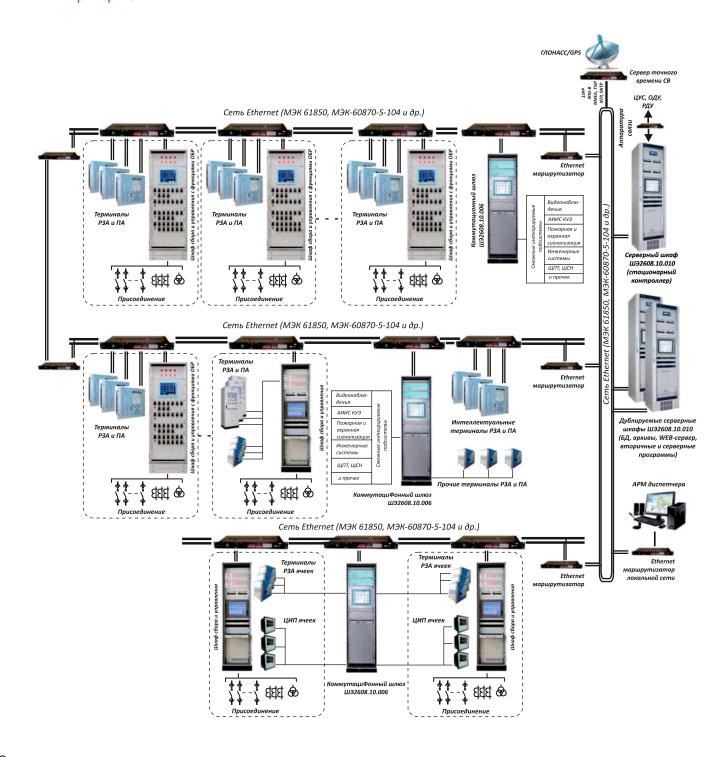
Терминалы серии ЭКРА 211


										Вь	ιпο	ЛНЯ	емь	sie c	рун	кци	И										
									3a	щи	та										F	Вт	ома	тик	а		
Тип исполнения терминала	Диф. защита	Д3	MT3	ЗПВ	3	3033	3П	3MH	3HP	30M	ЗПН	лзш	здз	T3HN	КИН	KC	змч	3MT	34	yPOB	АПВ	ABP	AHP	ЧАПВ	AyB	APKT	Учет коммутаци- онного ресурса
ЭКРА 211 0101	٧	-	٧	٧	-	-	٧	٧	٧	٧	٧	٧	٧	-	-	-	-	-	٧	٧	-	-	-	-	٧	-	٧
ЭКРА 211 0201	٧	-	٧	-	٧	-	٧	٧	-	-	٧	٧	٧	-	-	-	-	-	-	٧	-	-	-	-	٧	-	٧
ЭКРА 211 0202	٧	-	٧	-	٧	-	-	-	-	-	-	-	٧	٧	-	-	-	-	-	٧	٧	-	-	-	٧	-	٧
ЭКРА 211 0301	-	-	-	-	-	٧	-	٧	٧	-	٧	-	٧	-	-	-	-	-	-	٧	٧	-	٧	٧	٧	-	٧
ЭКРА 211 0302	٧	-	٧	-	-	٧	-	٧	٧	-	٧	-	٧	-	-	-	-	-	-	٧	٧	-	٧	٧	٧	-	٧
ЭКРА 211 0303	-	٧	٧	-	-	٧	-	٧	٧	-	٧	-	٧	-	-	-	-	-	-	٧	٧	-	٧	٧	٧	-	٧
ЭКРА 211 0401	-	-	٧	-	-	-	-	-	٧	-	-	٧	٧	-	-	-	-	-	-	٧	-	٧	-	-	٧	-	٧
ЭКРА 211 0402	-	-	٧	-	-	-	-	-	٧	-	-	٧	٧	-	٧	٧	-	-	-	٧	-	٧	-	-	٧	-	٧
ЭКРА 211 0501	-	-	٧	-	-	٧	٧	٧	٧	٧	-	-	٧	-	-	-	-	-	-	٧	٧	-	٧	٧	٧	-	٧
ЭКРА 211 0502	٧	-	٧	-	-	٧	٧	٧	٧	٧	-	-	٧	-	-	-	-	-	-	٧	٧	-	٧	٧	٧	-	٧
ЭКРА 211 0503	٧	-	٧	-	-	٧	-	٧	٧	٧	٧	-	٧	-	-	-	٧	٧	-	٧	-	-	-	-	٧	-	٧
ЭКРА 211 0601	-	-	٧	-	-	٧	-	٧	٧	-	-	٧	٧	-	-	-	-	-	-	٧	-	٧	-	-	٧	-	٧
ЭКРА 211 0602	-	-	٧	-	-	٧	-	٧	٧	-	-	٧	٧	-	-	-	-	-	-	٧	٧	٧	-	-	٧	-	٧
ЭКРА 211 0603	-	٧	٧	-	-	٧	-	٧	٧	-	-	٧	٧	-	-	-	-	-	-	٧	-	٧	-	-	٧	-	٧
ЭКРА 211 0701	٧	٧	٧	-	-	٧	-	٧	٧	-	-	-	٧	-	-	-	-	-	-	٧	-	٧	-	-	٧	-	٧
ЭКРА 211 1301	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	٧	-
ЭКРА 211 1302	-	-	٧	-	-	-	-	-	-	-	-	-	٧	-	٧	٧	-	-	-	٧	-	-	-	-	٧	-	٧
ЭКРА 211 1501	-	-	-	-	-	٧	-	٧	-	-	٧	-	-	-	-	-	-	-	-	-	-	-	٧	٧	-	-	-
ЭКРА 211 1601	-	-	٧	-	-	-	٧	٧	-	-	٧	-	٧	٧	-	-	-	-	-	٧	٧	-	-	-	٧	-	٧

Все технические решения изначально предполагают возможность использования цифровых решений с применением стандарта МЭК 61850 (Стандарт МЭК 61850 относится к системам автоматизации подстанции и отвечает требованиям интегрированной обработки информации, предоставляя пользователям возможность доступа в реальном времени масштабе времени к упорядоченной системе знаний).

Внедрение стандарта МЭК 61850 при разработке и внедрении распределительных систем позволяет получить следующие преимущества над классическими решениями:

- Повышение качества выполнения основных технологических функций;
- Повышение надежности выполнения основных технологических функций;
- Снижение затрат на выполнение основных технологических функций;
- Создание сетевого объекта с интеллектуальным управлением посредством применения серии протоколов МЭК 61850;
- Унификация информационных протоколов обмена данными;
- Обеспечение наблюдаемости каналов сбора, передачи информации и управления потоками данных;
- Снижение метрологических потерь во вторичных цепях за счет применения измерительных трансформаторов нового типа, таких как:
 - Упрощение способов тиражирования первичной информации;
 - Упрощение механизмов поверки устройств;
 - Применение устройств с обновляемым программным обеспечением;
 - Унификация механизмов конфигурирования в единой цифровой среде подстанции;
 - Формирование единой системы диагностики;
 - Переход к необслуживаемым подстанциям;
- Организация резервирования информационных потоков при подключении к технологической шине подстанции;
- Сокращение количества единиц оборудования на подстанции за применения многофункциональных интеллектуальных электронных устройств;
- Существенное сокращение затрат на кабельные вторичные цепи и каналы их прокладки за счет приближения источников цифровых сигналов к первичному оборудованию;
- Повышение электромагнитной совместимости современного вторичного оборудования микропроцессорных устройств и вторичных цепей благодаря переходу на оптические связи;
- Всестороннее тестирование системы за счет возможностей по созданию различных поведенческих сценариев и их моделирования в цифровом виде;
- Унифицирование интерфейсов устройств IED, упрощение взаимозаменяемости этих устройств (в том числе замена устройств одного производителя на устройства другого производителя);
- Сокращение расходов на непроизводственные перемещения персонала за счет возможности настройки и контроля параметров работ из единого центра


Структура цифровой подстанции 6(10)

Возможность интеграции в системы комплексных АСУ ТП

Компания ZETO разрабатывает комплексные системы ACУ TП, имея в виду ключевые цели их создания: повышение качества, надежности работ ПС и снижение затрат при ее обслуживании. Это позволяет создать систему с наиболее рациональной для конкретного объекта структурой, максимально учитывая пожелания заказчика.

Пример АСУ ТП

Организационные уровни

У Контроллерный уровень

- Совокупность шкафов сбора и передачи информации типа ШЭ2608.10.X11 и их различные модификации совместно с интеллектуальными контроллерами РЗА, оборудованием ПА и других подсистем образуют средний контроллерный уровень ПТК.
- М1одульность состава шкафов ШЭ2608.10.X11 позволяет при небольшой номенклатуре типовых узлов оптимально распределить решение всех функциональных задач системы между аппаратурой среднего уровня и придать соответствующую специализацию каждому шкафу уже на этапе проектирования АСУ ТП ПС.
- Вычислительные ресурсы шкафов сбора и передачи обеспечивают все необходимые возможности и средства для организации локального сбора и предварительной обработки данных, регистрации событий и информационного обмена шкафов на сетевом уровне ПТК.

5 Сетевой уровень

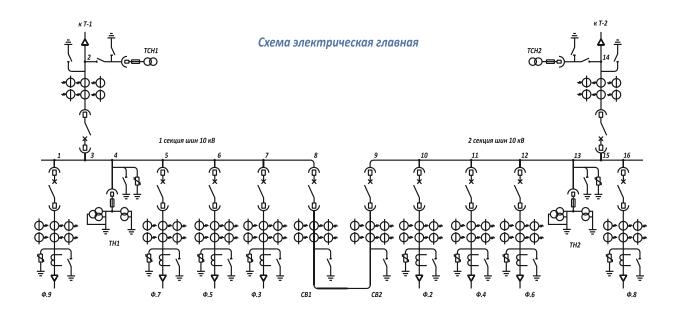
- Для обеспечения надежной среды взаимодействия между контроллерами ПТК используют дублированную оптоволоконную сеть Ethernet. Средства Ethernet сетей предоставляют широкие возможности сегментации сети, распределения и маршрутизации информационных потоков для оптимизации трафика и минимизации времени доставки сообщений между клиентами сети.
- Сетевой уровень ПТК реализован с использованием широко применяемого в энергетике сетевого оборудования известных фирм-производителей.
- Система синхронизации времени является специфической подсистемой сетевого уровня, предназначенной для синхронизации локальных таймеров всех устройств, объединяемых ПТЕ в системе АСУ ТП ПС.

5 Верхний уровень

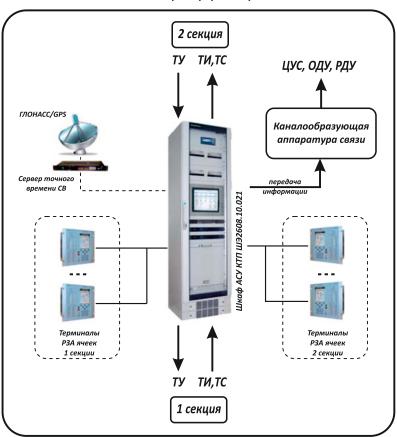
- Верхний уровень реализует функцию поддержки дистанционного управления и обмена данными о состоянии объекта с обслуживающим персоналом и вышестоящими системами. Данный уровень включает в себя пользовательские автоматизированные рабочие места (APM), коммуникационное и серверное оборудование.
- Серверное оборудование ПТК предназначено для организации регистрации и хранения данных о событиях и аварийных ситуациях, создания оперативных и архивных баз данных, обеспечения работы различных вычислительных и вспомогательных программных сервисов системы, выполнения функций преобразования интерфейсов и протоколов при организации связи с системами и клиентами верхнего уровня.

Возможность интеграции в системы комплексных АСУ ТП. SCADA - система EKRASCADA

Программный комплекс EKRASCADA обеспечивает выполнение целевых, инструментальных и вспомогательных функций на всех уровнях АСУ ТП.


Отличительные достоинства EKRASCADA:

- гибкость структуры возможность добавления и исключения программных средств без структурных конфликтов;
- **5** единый интерфейс SCADA-проект системы конфигурируется как единый набор интеллектуальных устройств независимо от типов, марок, производителей;
- удобный и понятный пользователю графический интерфейс APM ппростота и эффективность работы оперативного, диспетчерского, эксплуатационного и обслуживающего персонала;
- развитый инструментальный комплекс легкость и удобство поддержки, процедур разработки, проектирования, наладки и сопровождения в процессе функционирования системы.



Пример системы управления для небольшой подстанции

Комплектная трансформаторная ПС

Предоставляемые услуги

Сервисные службы компании всегда рядом на протяжении всего срока эксплуатации Вашей электроустановки

Составление спецификации

Мы помогаем Вам в подготовке решения: подбор комплектующих, консультации

Внедрение

Мы наблюдаем за завершением работ по монтажу вашей установки и за вводом ее в эксплуатацию: проектирование, оптимизация затрат, гарантированные эксплуатационные показатели и обеспечение надежности, приемо-сдаточные испытания.

Эксплуатация

Мы помогаем Вам выполнять ежедневные операции по эксплуатации установки в реальном времени: контракт на техническое обслуживание, техническую помощь, поставка запасных частей, техническое обслуживание с устранением неисправностей и профилактическое техническое обслуживание, обучение и т.д.

Модернизация

Мы можем довести эксплуатационные характеристики Вашего оборудования до современного уровня: аудит установки, диагностика КРУ, адаптация и модификация, восстановление оборудования после истечения срока службы и т.д.

Продление гарантии

Мы предлагаем продлить срок гарантии на Вашу установку только в том случае, если перед вводом в эксплуатацию она проверялась нашими специалистами.

Диагностика выключателей/контакторов

На протяжении всего срока службы оборудования можно проводить текущий контроль его характеристик для оптимизации технического обслуживания. Этот пункт может быть включен в общей контракт на техническое обслуживание установки.

Восстановление оборудования после истечения срока службы

Сертифицированное качество, соответствие стандартам

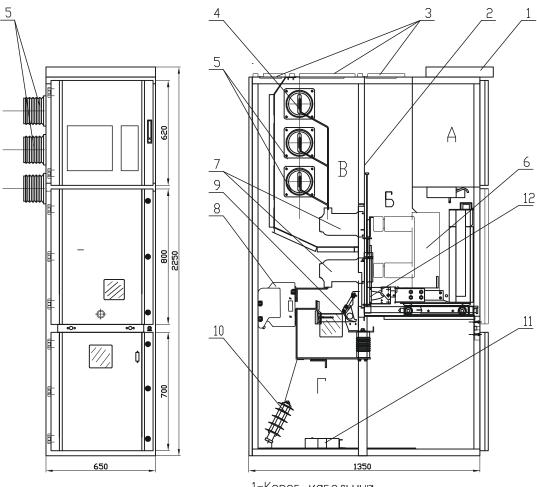
Главное достоинство

Весь цикл от разработки конструкторской документации до сборки готовой продукции производится в строгом соответствии с нормами российских и международных стандартов. Строгие и систематические проверки

В процессе изготовления каждая ячейка КРУ ZETO проходит испытания для проверки качества и соответствия стандартам:

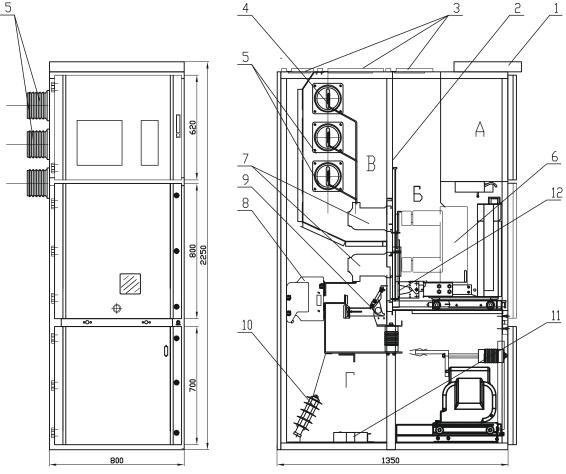
- изменения времени отключения и включения;
- измерение сопротивления главной цепи;
- испытание прочности изоляции;
- тестирование систем защиты и блокировок, имитация аварийных ситуаций;
- тестирование низковольтных компонентов;
- проверка на соответствие чертежам и схемам;
- комплексное апробирование всей распределительной системы в заводских условиях.

Полученные результаты заносятся в акты об испытании устройства.


Защита окружающей среды

КРУ ZETO было спроектировано с учетом следующих требований по защите окружающей среды:

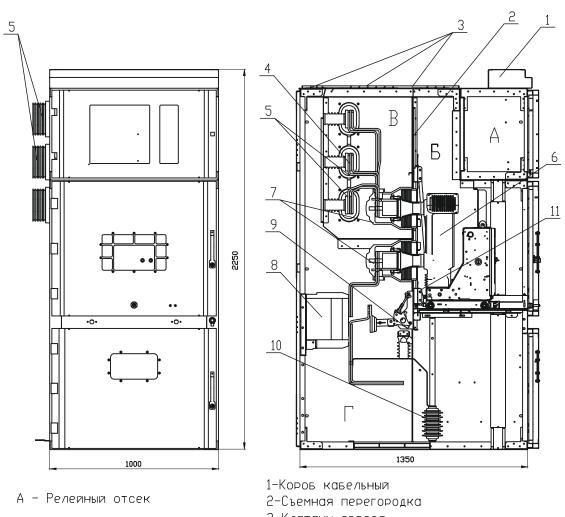
- использованные материалы, изоляторы и проводники промаркированы, легко снимаются и пригодны к переработке для вторичного использования;
- в составе ячейки отсутствуют токсичные и канцерогенные материалы;
- производственные зоны соответствуют требованиям стандартов по охране труда.


Описание

Шкаф 10 кВ с кабельным вводом 1250A

- А релеиныи отсек
- Б отсек выкатного элемента
- В отсек сборных шин
- Г кабельный отсек

- 1-Короь кабельный
- 2-Съемная перегородка
- 3-Клапаны сьроса
- 4-Сьорные шины
- 5-Изоляторы проходные
- 6-Выключатель вакээмный
- 7-Изоляторы проходные с контактом
- 8-Трансформаторы тока
- 9-Заземляющий разъединитель
- 10-ОПН
- 11-ТТНП
- 12-Шторочный механизм



Шкаф 10 кВ с кабельным вводом 2000A

- А Релеиныи отсек
- Б отсек выкатного элемента
- В отсек сборных шин
- Г кабельный отсек

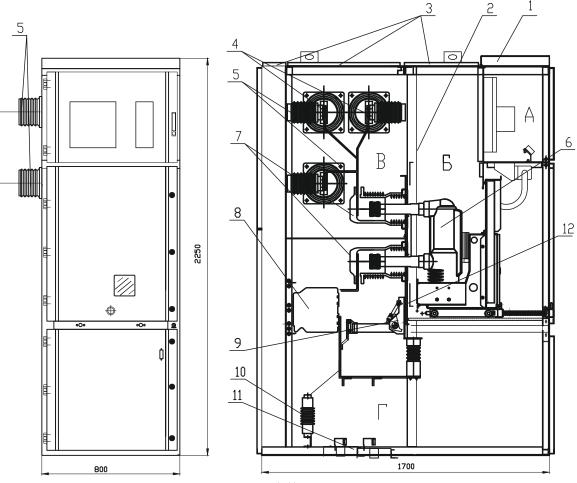
- 1-Короб кабельный
- 2-Съемная перегородка
- 3-Клапаны сьроса
- 4-Сьорные шины
- 5-Изоляторы проходные
- 6-Выключатель вакээмный
- 7-Изоляторы проходные с контактом
- 8-Трансформаторы тока
- 9-Заземляющий разъединитель
- 10-ОПН
- 11-ТТНП
- 12-Шторочный механизм

Шкаф 10кB с кабельным вводом до 3150A

- Б отсек выкатного элемента
- В отсек сборных шин
- Г кабельный отсек

- 3-Клапаны съроса
- 4-Сьорные шины
- 5-Изоляторы проходные
- 6-Выключатель вакээмный
- 7-Изоляторы проходные с контактом
- 8-Трансформаторы тока
- 9-Заземляющий разъединитель

10-0∏H


11-Шторочный механизм

4 В 10 6 12 2250 _11 8 9 8 1000 1350

Шкаф 10 кB с шинным вводом до 3150A

- А Релейный отсек
- Б отсек выкатного элемента
- В отсек сворных шин
- Г кабельный отсек

- 1-Короб кабельный
- 2-Съемная перегородка
- 3-Клапаны сьроса
- 4-Сьорные шины
- 5-Изоляторы проходные
- 6-Выключатель вакээмный
- 7-Изоляторы проходные с контактом
- 8-Трансформаторы тока
- 9-Заземляющий разъединитель
- 10-Опорные изоляторы
- 11-Шины 12-Шторочный механизм

ШкаФ 10 кВ с кабельным вводом 1600А

- А релеиныи отсек
- Б отсек выкатного элемента
- В отсек сборных шин
- Г кабельный отсек

- 1-Короб кабельный
- 2-Съемная перегородка
- 3-Клапаны съроса
- 4-Сьорные шины
- 5-Изоляторы проходные
- 6-Выключатель вакээмный
- 7-Изоляторы проходные с контактом
- 8-Трансформаторы тока
- 9-Заземляющий разъединитель
- 10-ОПН
- 11-ТТНП
- 12-Шторочный механизм

Технические характеристики

КРУ предназначены для приема и распределения электрической энергии трехфазного переменного тока частотой 50 Гц напряжением 6(10) кВ в сетях с изолированной или заземленной через дугогасящий реактор или высокоомный резистор нейтралью.

Наименование параметра	Значение
Номинальное напряжение, кВ	6,0; 10,0
Наибольшее рабочее напряжение, кВ	7,2; 12,0
Номинальный ток главных цепей, А	630; 1250; 1600; 2000; 2500; 3150
Номинальный ток сборных шин, А	630; 1250; 1600; 2000; 2500; 3150
Номинальный ток отключения силового выключателя, кА	20; 31,5
Ток термической стойкости, кА	20; 31,5
Ток электродинамической стойкости, кА	51; 81
Время протекания тока термической стойкости, с	3
Номинальное напряжение вспомогательных цепей, В: -постоянный ток -переменный ток	110; 220 100; 220
Габаритные размеры, мм: -ширина -глубина -высота	650*; 800; 1000** 1440; 1640***; 1820*** 2250
Масса шкафа КРУ кг, не более	1150

Классификация исполнения

Наименование параметра	Исполнение
Уровень изоляции по ГОСТ 1516.3	Нормальная «б»
Вид изоляции	Воздушная, твердая, комбинированная
Наличие изоляции токоведущих шин главных цепей	С неизолированными шинами С изолированными шинами
Вид линейных высоковольтных присоединений	Шинные и кабельные
Наличие выдвижных элементов в шкафах	С выдвижными элементами. Без выдвижных элементов
Условия обслуживания	С двусторонним С односторонним
Наличие дверей	С дверьми
Вид оболочки шкафа	Сплошная металлическая
Вид управления	Местное, дистанционное, телемеханическое
Вид привода заземлителя	Ручной Электромоторный
Вид привода для перемещения ВЭ внутри КРУ	Ручной Электромоторный

^{*} На номинальный ток до 1250 A ** На номинальный ток 2500 A - 3150 A

^{***} Для шкафов с верхним шинным вводом.

Энергоэффективность и энергосбережение

Компания ЗЭТО уделяет значительное внимание энергоэффективности выпускаемой продукции. КРУ ZETO не является исключением.

Основные направления работ:

🗲 Снижение потерь при непосредственной передаче электроэнергии

- минимизировано количество разборных контактных соединений, что ведет к уменьшению общего сопротивления;
- все контактные соединения имеют гальваническое покрытие для предотвращения потери проводимости со временем;
- главные цепи выполняются из меди;
- контактные площадки шин главных цепей имеют специальную обработку систему выступов, деформация которых улучшает контакт при сжатии.

5 Снижение затрат электроэнергии при эксплуатации КРУ

- применены светодиодные лампы освещения шкафов;
- автоматическое отключение обогрева релейных шкафов.

Снижение затрат связанных с авариями, недоотпуском электроэнергии

- дуговая защита на оптоволоконных датчиках для снижения до минимума времени воздействия открытой дуги, улучшения селективности, исключения ложных срабатываний;
- разделение шкафа на отсеки для снижения зоны поражения при дуговом КЗ в ячейке;
- электропривод выкатного элемента дает возможность проводить оперативные переключения дистанционно, ускоряя ввод резерва;
- электропривод заземляющего разъединителя;
- полностью взаимозаменяемые выкатные элементы.

Снижение затрат на ремонт и эксплуатацию оборудования

• в варианте ячеек с контактными соединениями, выполненными из медных шин, и твердой изоляцией не требуется обслуживание;

Защита персонала

Стойкость ячеек **КРУ ZETO** к воздействию внутренней дуги

Конструкция ячеек КРУ ZETO имеет высокий уровень безопасности, обеспечивая ослабление воздействия внутренней дуги благодаря следующим конструктивным решениям:

- в случае внутреннего короткого замыкания металлические клапана, установленные в верхней части шкафа, ограничивают избыточное давление в отсеках, отводя продукты горения дуги вверх и обеспечивая тем самым безопасность для оператора;
- для изготовления ячеек использованы негорючие материалы:
- применена быстродействующая оптическая дуговая защита в комбинации с концевыми выключателями, расположенными под клапанами сброса. Это позволяет гарантированно обнаружить образование дуги и отключить выключатели, что бы короткое замыкание длилось менее 140 мс.
- В качестве оптической защиты используются устройства серии «Овод-МД».

Установка ячеек КРУ ZETO

При установке ячеек КРУ ZETO необходимо учитывать следующее:

- в случае, когда распределительное устройство КРУ ZETO установлено вплотную к стене, доступ к задней панели невозможен. В данном случае обеспечивается трехсторонняя защита от воздействия внутренней дуги.
- в случае, если распределительное устройство установлено в середине комнаты, необходимо обеспечить четырехстороннюю защиту, что бы обезопасить оператора с задней стороны ячейки.

Установка в комнате с ограниченной высотой под потолком

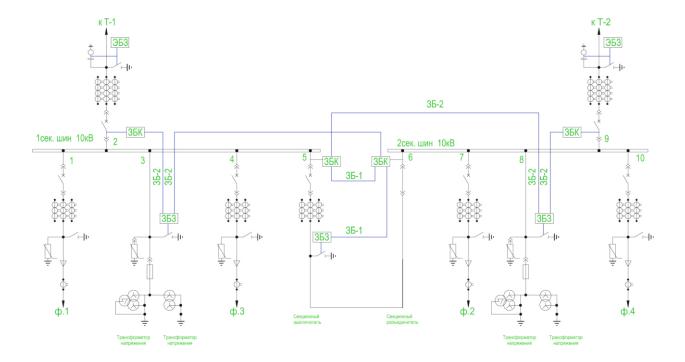
- при высоте потолка от 2,8 до 3,5 метров необходимо установить над распределительным устройством газоотводный канал. Это делается для того, что бы отвести продукты горения дуги от операторов, находящихся в комнате;
- при высоте более 3,5 метров установка газоотводных каналов не обязательна.

Все операции с оборудованием, включая доступ в отсек кабельной сборки, осуществляется с фасада ячейки (опция — двустороннее обслуживание).

Встроенные блокировки предотвращают ошибочные действия операторов.

Предусмотрена многоуровневая система обеспечения безопасности обслуживающего персонала:

- операции по вкатыванию и выкатыванию допускаются только при закрытой двери отсека;
- обширный набор механических и электрических блокировок делает невозможными ошибки обслуживающего персонала. Кроме того, возможна установка дополнительных блокировок с ключом или при помощи навесных замков.
- все операции по управлению оборудованием, включая доступ в отсек кабельной сборки и в отсек сборных шин, осуществляются с фасада ячейки;
- на передней панели установлен специальный указатель напряжения, в непосредственной близости от рукоятки управления заземлителем;
- благодаря установке электроприводов имеется возможность дистанционного оперирования всеми коммутационными операциями, с панели на двери отсека РЗА и/или с APM;
- блокировка при вкатывании: первичная невозможность перемещения выкатного элемента при включенном выключателе, вторичная отключение выключателя при выкате.


Электромагнитная блокировка 3Б3

Электромагнитная блокировка 3Б3 осуществляет блокировку заземлителя и устанавливается опционно. Элементы блокировки располагаются на шкафу и делают невозможным оперирование приводом заземлителя при наличии напряжения. На дверях отсека вспомогательных цепей устанавливается реле коммутационной блокировки, дающее разрешение на разблокирование.

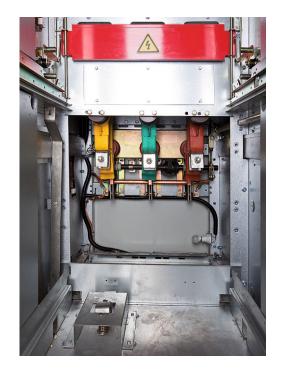
Электромагнитная блокировка ЗБК

Электромагнитная блокировка ЗБК является блокировкой перемещения ВЭ и устанавливается опционно. Блокировка отслеживает положение ВЭ в отсеке, и делает невозможным перемещение ВЭ из рабочего положения в контрольное и наоборот с включенном выключателем, или включенном заземлителе системы секционирования.

Пример реализации блокировок

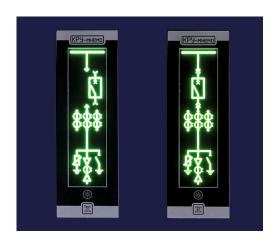
Простота обслуживания

Демонтаж перегородки между кабельным отсеком и отсеком выкатного элемента

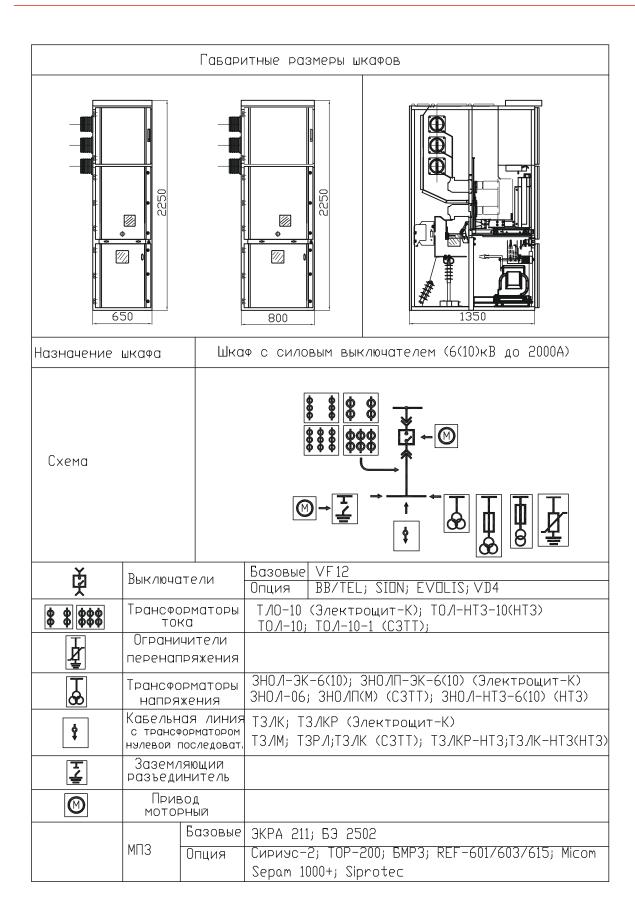

Демонтаж панели доступа к трансформаторам тока, заземляющему разъединителю и кабельным сборкам.

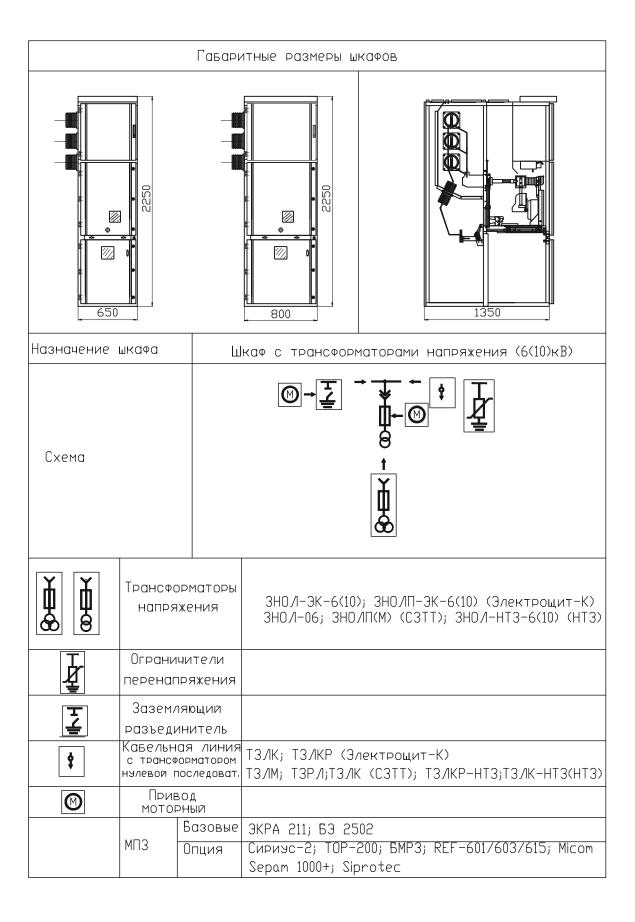
Технологический лючок обслуживания сборных шин в магистрали сброса давления из отсека выкатного элемента.

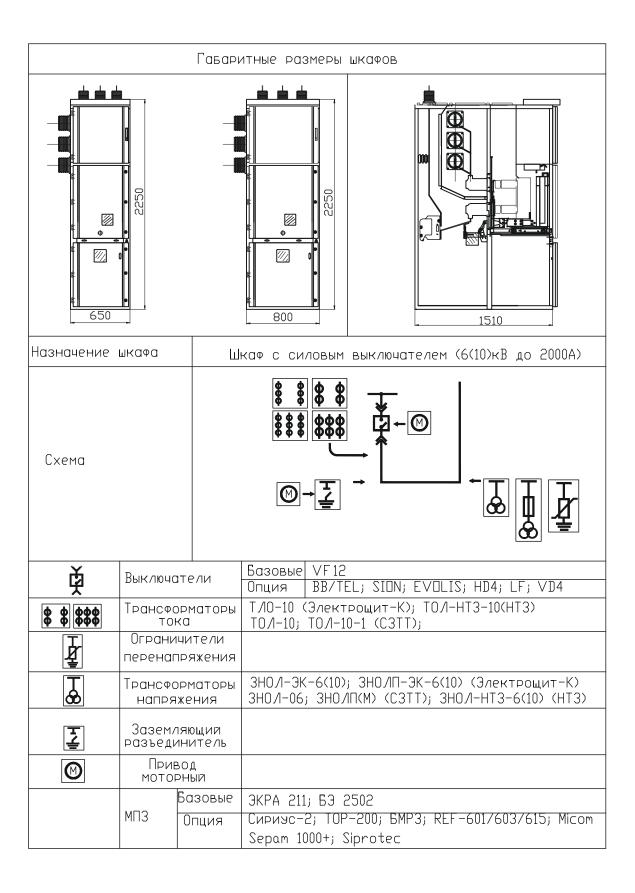
Отсек РЗиА

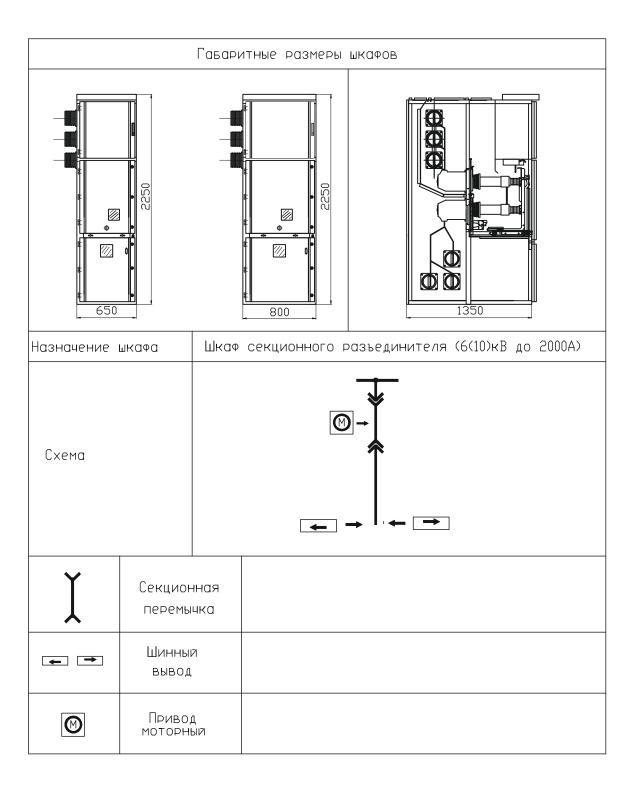

Доступ к заземлителю и отпайкам

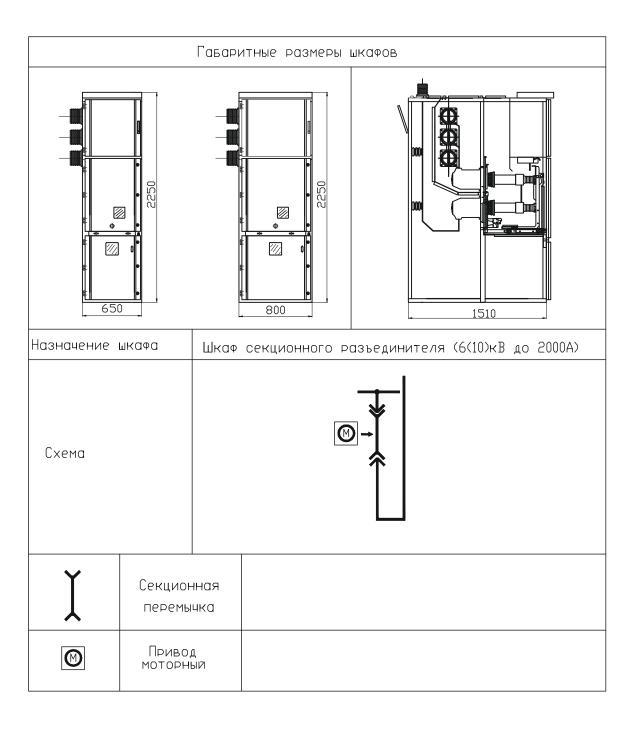
Дистанционное управление выкатным элементом

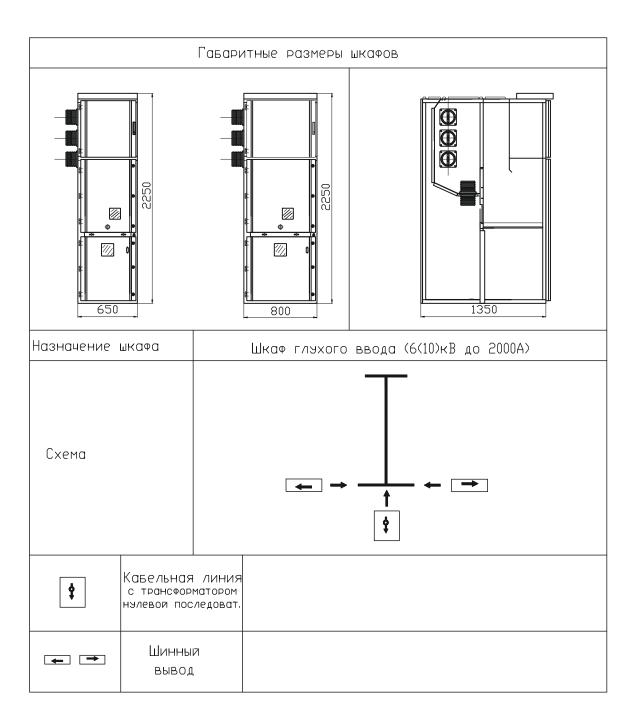


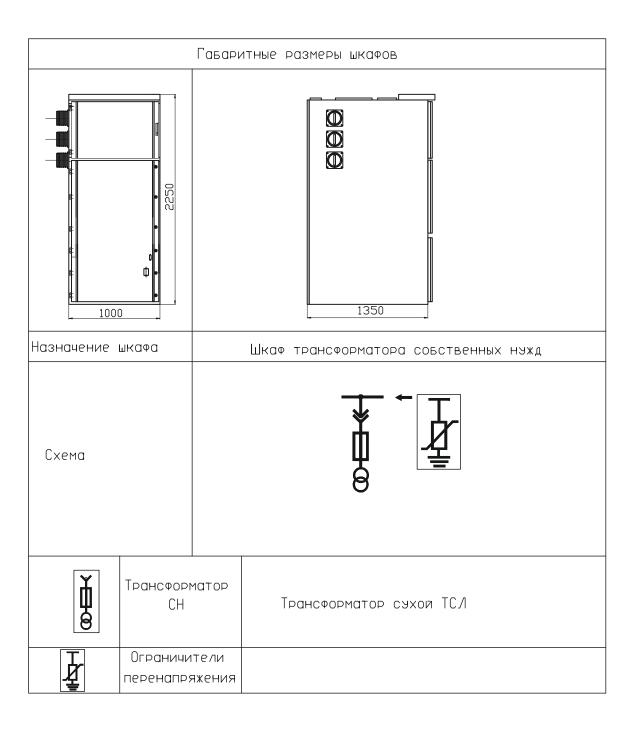

Управление заземляющим разъединителем

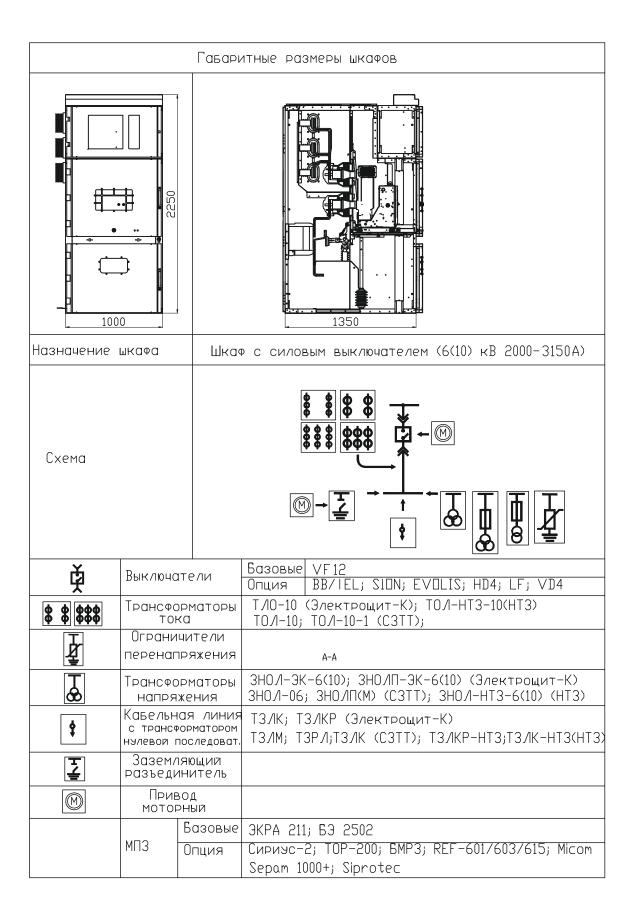


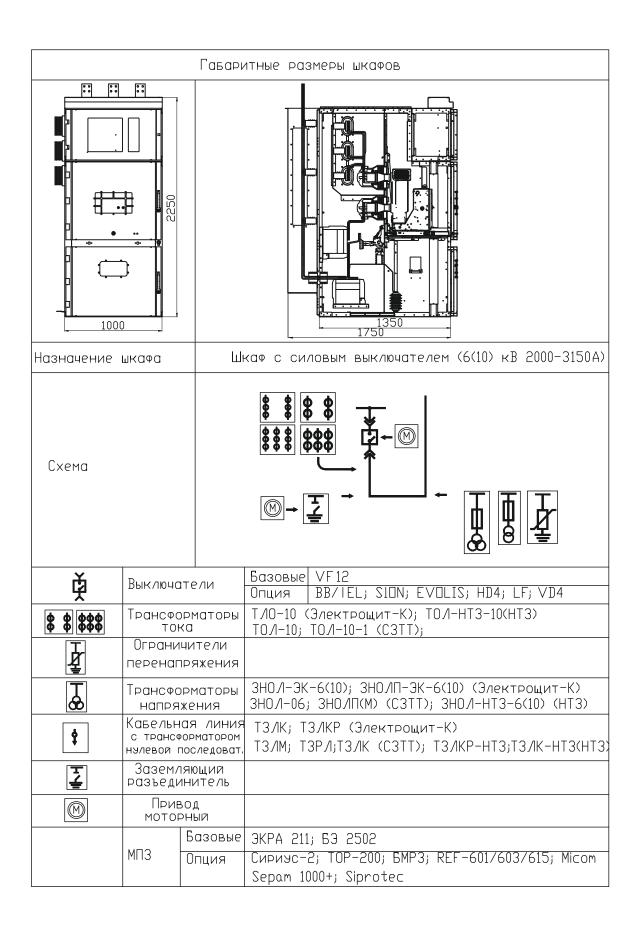

Мнемосхема

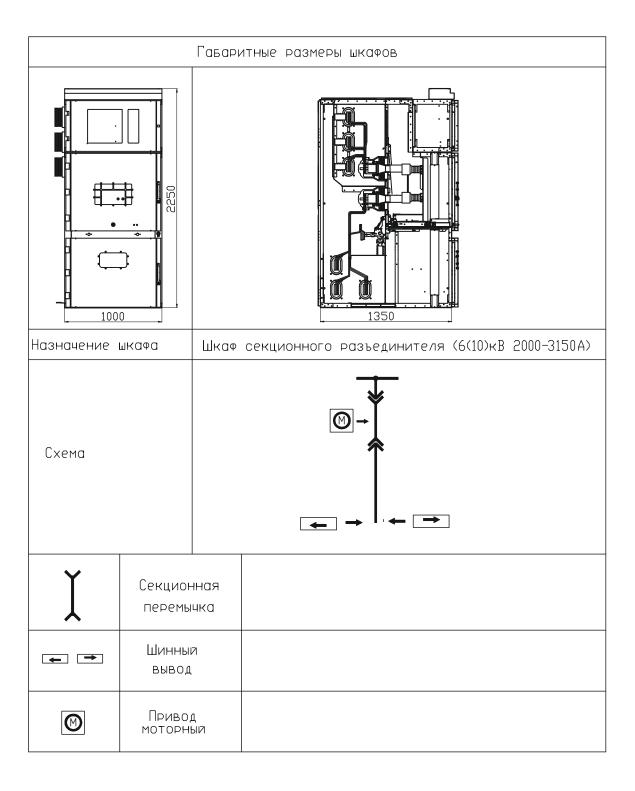

Выбор ячеек

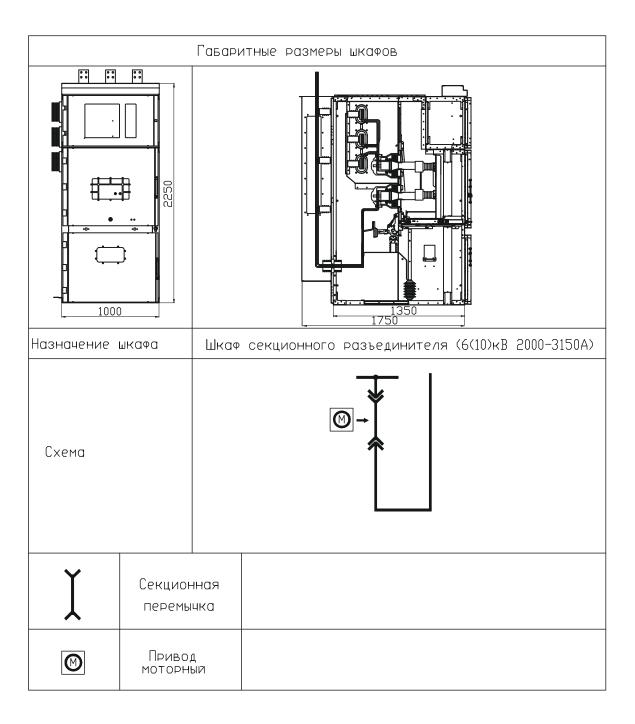








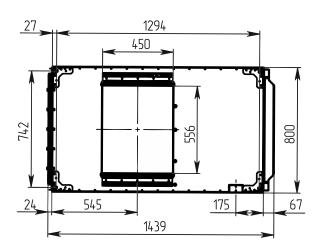


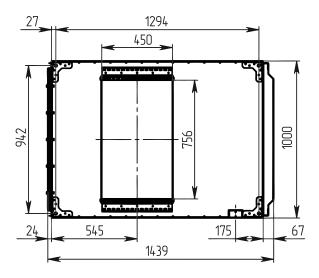


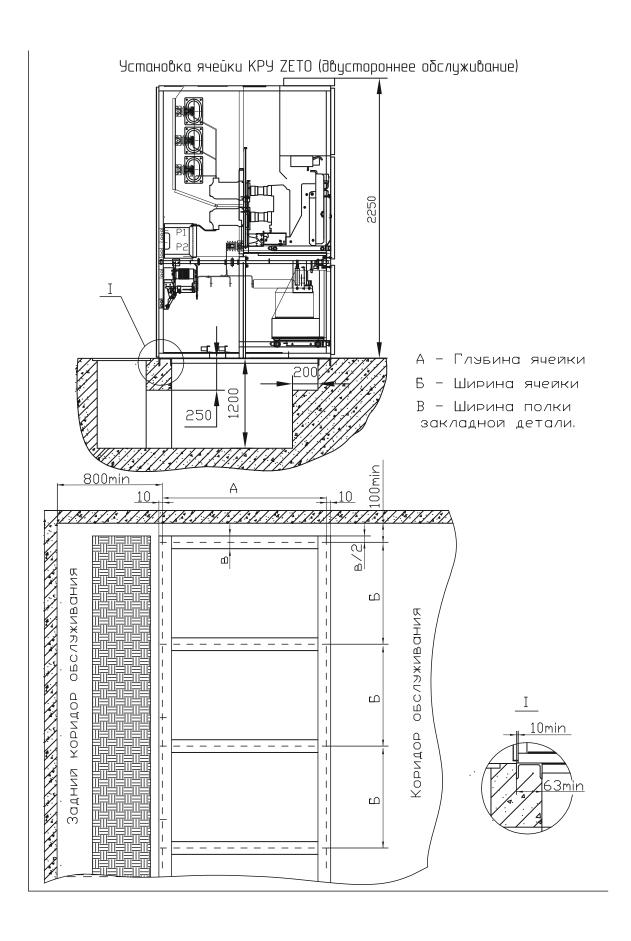
Установка ячеек

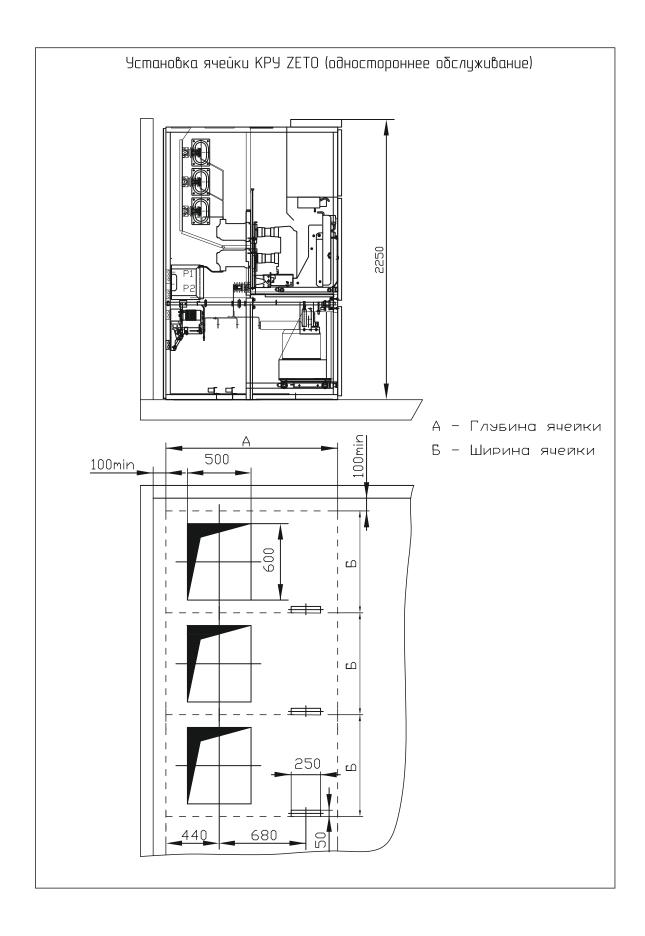
Требования к фундаментным рамам и кабельным каналам

Шкафы КРУ устанавливаются непосредственно на выровненный бетонный пол или закладную металлическую фундаментную раму. Для устранения неровностей бетонного пола, необходимо выполнить выравнивание слоем отделочного цемента. Неровности более 3 мм/м не допускаются.


Общую ровность пола рекомендуется проверять железной линейкой, перемещаемой по опорной поверхности. Линейка длинной 2 метра не должна выявлять неровности опорной поверхности более, чем 5 мм.


Перед началом монтажа необходимо проверить соответствие фундаментной рамы и кабельных каналов проектной документации и приведенным далее рисункам.


Установка ячеек на бетонном полу


Шкафы КРУ могут крепиться непосредственно к бетонному полу с покрытием для обеспыливания или к фундаментной раме четырьмя анкерными болтами M10x60 через специальные отверстия диаметром 12 мм, выполненные в основании шкафов.

Основание ячейки КРУ ZETO

Выключатели серии VF12

Описание

Выключатели вакуумные VF12 предназначены для эксплуатации в сетях трехфазного переменного тока с номинальным напряжением 6 или 10 кв с изолированной или заземленной через дугогасящий реактор или резистор нейтралью.

Габаритные и присоединительные размеры выключателей позволяют не только устанавливать их во все типы камер сборных одностроннего обслуживания (КСО) и комплектных распределительных устройств (КРУ), выпускаемых на сегодняшний день, но и устанавливать их при замене отслуживших свой срок силовых выключателей (ретрофит).

Конструктивные особенности

Конструктивно выключатель вакуумный VF12 представляет собой металлический корпус, на котором закреплены три полюса главной токоведущей цепи.

Корпус изготовлен из конструкционной листовой стали и покрыт порошковой краской.

Внутри корпуса размещен пружинно-моторный привод, органы управления которым выведены на лицевую панель выключателя.

Основной элемент каждого полюса – вакуумная дугогасительная камера, установленная внутри полюса.

Корпус полюса — многослойная конструкция из силиконового и эпоксидного компаундов, выполняющих изолирующую и защитную функции.

Выключатель вакуумный VF12 в выкатном исполнении комплектуется тележкой аппаратной и контактной системой.

Наименование параметра	VF12		
Номинальное напряжение, кВ	10		
Наибольшее рабочее напряжение, кВ	12		
Номинальный ток, А	630; 800; 1000; 1250; 1600; 2000; 2500; 3150		
Номинальный ток отключения, кА	20; 25; 31,5; 40		
Ток термической стойкости, кА	20; 25; 31,5; 40		
Коммутационный ресурс (количество циклов в– t_n –O) при номинальном токе отключения, «отключение», не менее	50		

Выключатели серии VD4 и HD4

Описание

Vd4 — вакуумный выключатель предназначенный для установки в КРУ, и обладающий достаточной коммутационной способностью для беспечения работы электрических цепей во всех режимах работы, как нормальных, так и аварийных. В том числе при возникновении коротких замыканий.

Выключатель имеет компактную конструкцию, малые габаритные размеры, оборудован пружинно-моторным приводом требующем минимального обслуживания. Выключатель состоит из трех полюсов, расположенных на общей раме, и привода.

Полюса столбчатой конструкции. Материал корпуса — эпоксидная смола, надежно защищает от ударов и иных вредных воздействий. Внутри корпуса расположены КДВ, токовыводы, механизм поджатия и тяга.

Привод выключателя — пружинный, общий для всех трех полюсов. Привод состоит из электромотора, цилиндрической спиральной рабочей пружины, фиксатора и вала с передаточным механизмом. Дополнительные устройства: расцепители, вспомогательные переключа-

Дополнительные устройства: расцепители, вспомогательные переключатели, индикаторные элементы. Привод удобен для повторного включения, а учитывая непродолжительное время заводки, так-же и для многократного повторного включения.

HD4 — в качестве дугогасящей и изоляционной среды используется элегаз (SF6). Отключение в элегазе происходит без среза тока и без перенапряжения, что обеспечивает длительный срок службы выключателя и ограничение динамических и температурных нагрузок на установку.

Полюса выключателя, представляют собой герметичные, не нуждающиеся в обслуживании системы, заправленные элегазом на весь срок службы. Механический пружинный привод оборудован свободным расцепителем. Привод и полюса закреплены на металлическом основании, которое служит опорою для подвижных частей механизма, служащего для управления подвижными контактами. Включатель оборудован тележкой для установки и извлечения из шкафа КРУ.

Наименование параметра VD4 HD4
Haumenobanne napamena
Номинальное напряжение, кВ 6; 10
Наибольшее рабочее напряжение, кВ 7,2; 12
Номинальный ток, А 630; 1250; 1600; 2000; 2500; 3150
Номинальный ток отключения, кА 20; 31,5
Ток термической стойкости, кА 20; 31,5
Сквозной ток короткого замыкания, кА 51; 81

Выключатели серии EVOLIS и LF

Описание

EVOLIS — серия вакуумных выключателей на напряжение 6(10) кВ, сочетающая в себе простой выбор и обширное предложение.

Выключатель имеет пружинно-моторный привод, который обеспечивает возможность включения без оперативного питания. Оснащение приводного механизма моторредуктором, позволяет автоматически поддерживать запас энергии привода для полного цикла АПВ. Различные версии выключателя легко сочетаются с оборудованием в яейке.

Вакуумный выключатель в основе имеет КДВ. Камеры наружного расположения, и прикрываются от механических повреждений пластмассовыми кожухами. Вместе с механизмом поджатия и тяговым изолятором они образуют полюс выключателя. Привод располагается сзади блока полюсов и соединен с ними посредствам передаточного механизма.

LF — серия выключателей, в которых в качестве изолирующей и дугогасящей среды использован элегаз — шестифтористая сера, SF6. Выключатели предназначены для коммутации номинальных токов и отключения токов короткого замыкания.

В качестве изоляционной и дугогасящей среды в выключателях серии LF использован элегаз, обладающий высокими электроизоляционными характеристиками. Три фазы выключателя расположены в одном корпусе, заполненном элегазом при низком избыточном давлении. Каждый выключатель имеет защитную мембрану защищающую оператора от действия продуктов горения в случае критического повышения давления при появлении дуги КЗ. Применен метод дугогашения основанный на технике вращения дуги и эффекте температурного расширения газа. Надежность выключения гарантируется так же при нарушении герметичности камеры выключателя и пониженном уровня избыточного давления.

Наименование параметра	EVOLIS	LF
Номинальное напряжение, кВ	6; 1	10
Наибольшее рабочее напряжение, кВ	7,2;	12
Номинальный ток, А	630; 1250; 160 315	
Номинальный ток отключения, кА	20; 3	31,5
Ток термической стойкости, кА	20; 3	31,5
Сквозной ток короткого замыкания, кА	51;	81
Коммутационный ресурс, циклов	20 000	10 000

Выключатели серии ЗАЕ SION

Описание

Вакуумные силовые выключатели SION способны производить все виды коммутационных операций в распределительных сетях среднего напряжения и пригодны для установки в различные виды КРУ.

Технология коммутации в вакууме, применяемая в вакуумных ка мерах в качестве дугогасительного принципа, проверена и отработана за более чем 30 летнее применение.

Полюс выключателя состоит из вакуумной камеры и кожуха. Вакуумные камеры расположены открыто и легко доступны. Полюса закреплены на монтажной панели привода и закреплены в кожухах. Кожух поглащает внешнее воздействие от коммутационных и других механических воздействий.

Привод выключателя — пружинно-моторный. Все узлы и детали привода располагаются на монтажной плите.

Усилие передается от привода к вакуумным камерам посредствам рычажного механизма. Рабочая пружина может быть взведена либо вручную, либо электромотором. После взвода рабочий вал фиксируется с помощью защелки. Для местного управления служат кнопки на передней панели привода. После срабатывания рабочая пружина автоматически взводится. После этого выключатель готов выполнить весь коммутационный цикл ОТКЛ-ВКЛ-ОТКЛ, что необходимо для АПВ.

Наименование параметра	3AE SION
Номинальное напряжение, кВ	6; 10
Наибольшее рабочее напряжение, кВ	7,2; 12
Номинальный ток, А	630; 1250; 1600; 2000; 2500; 3150
Номинальный ток отключения, кА	20; 31,5
Ток термической стойкости, кА	20; 31,5
Сквозной ток короткого замыкания, кА	51; 81
Коммутационный ресурс, циклов	10 000

Выключатели серии BB/TEL-10

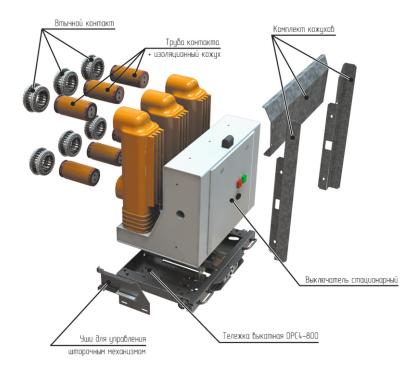
Описание

В основу работы выключателей серии BB/TEL-10 заложен принцип гашения дуги переменного тока в вакуумной дугогасительной камере.

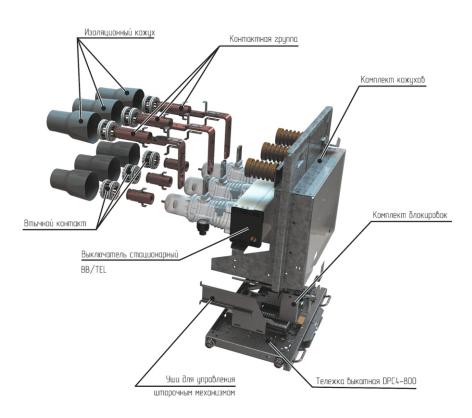
По сравнению с традиционными вакуумными и элегазовыми выключателями, выключатели BB/TEL состоят из двух функциональных модулей: коммутационного модуля и блока управления.

Коммутационный модуль состоит из трех полюсов, установленных на металлическом корпусе. Схема выключателя — простейшая, при которой все подвижные части двигаются вдоль вертикальной оси. Это позволило исключить наличие вращающихся элементов и создать необслуживаемый малогабаритный привод, в котором размещены пофазные электромагнитные приводы каждого полюса с магнитной защелкой, удерживающих выключатель неограниченно долго во включенном положении после прерывания тока в катушке привода при минимальном потреблении электроэнергии.

Основные узлы полюса размещаются в изоляционном корпусе, защищающих их от механических повреждений. Каждый полюс содержит КДВ, запрессованную в защитный изоляционный цилиндр.


Кроме этого полюс содержит верхний и нижний токосъемник и тяговый изолятор. Отключение выключателя происходит под действием возвратной пружины, своей для каждого полюса, расположенной в корпусе выключателя.

В качестве блоков управления используются By/TEL-12A; БУ/TEL-21-00 и СМ 1501 01, либо BU/TEL-220-05A совместно с блоком питания BP/TEL-220-02A.


Наименование параметра	BB/TEL-10 BB/TEL-10 Shell BB/TEL-10 HD
Номинальное напряжение, кВ	6; 10
Наибольшее рабочее напряжение, кВ	7,2; 12
Номинальный ток, А	630; 1000; 1600; 2000; 2500; 3150
Номинальный ток отключения, кА	20; 31,5
Ток термической стойкости, кА	20; 31,5
Сквозной ток короткого замыкания, кА	51; 81
Коммутационный ресурс, циклов	50 000; 150 000

Выкатные элементы

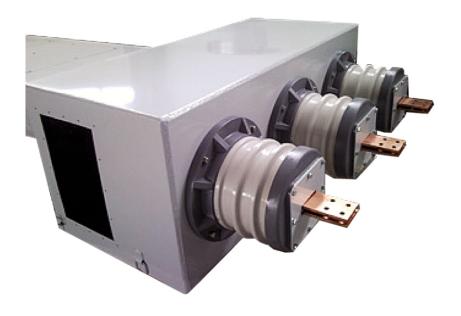
Выкатной элемент с выключателем: VF 12, ABB VD4, Siemens SION, SE Evolis, SE LF, Контакт ВБ(П,М)

Выкатной элемент с выключателем BB/TEL-10

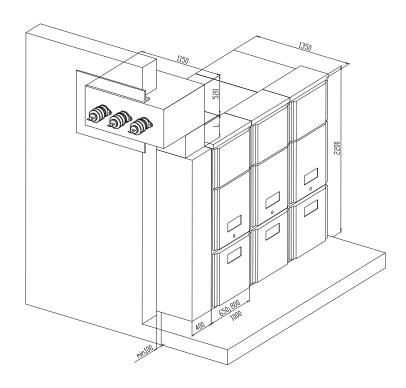
Шинные мосты и вводы

Назначение и область применения

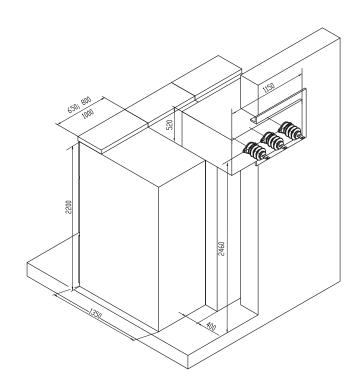
Присоединения шкафов КРУ могут быть как кабельными, так и шинными. Стандартно ввод шин в шкаф осуществляется сбоку или сзади шкафа с помощью переходных шкафов и шинных мостов.

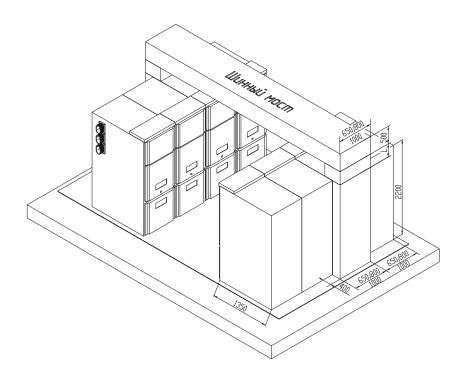

Шинные мосты используют для соединения секций КРУ по сборным шинам при многорядном расположении. Шинные мосты и переходные короба располагаются над отсеками сборных шин шкафов КРУ. Стандартная высота переходного короба в 200 мм обеспечивает нормальную работу клапанов сброса избыточного давления при возникновении в шкафах КРУ электрической дуги. Высота переходного короба может изменяться в зависимости от высоты ввода и особенностей строительной части.

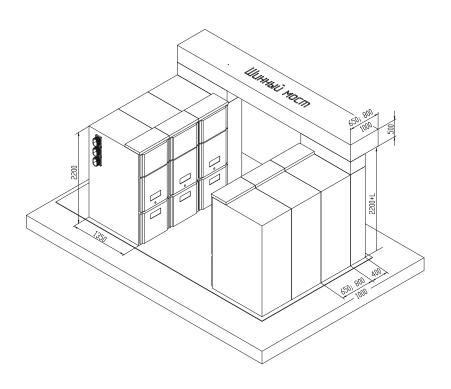
Конструкция шинных мостов и вводов


Шинные мосты представляют собой сварную или сборную металлоконструкцию, состоящую из кожуха с установленными внутри на опорных изоляторах медными или токоведущими шинами. Расположение шин в шинных мостах стандартно однорядное, но по спецзаказу возможно и другое расположение.

Длина шинных мостов зависит от ширины прохода между шкафами. Шинные мосты имеют сплошное ограждение от случайного прикосновения к токоведущим шинам.


Шинные мосты изготавливаются на номинальный ток от 630 до 4000A в зависимости от заказа. В зависимости от конструктивной модификации шкафов, на которые устанавливаются шинные мосты, они изготавливаются шириной 800 или 1000 мм. Ширина шинного ввода с установленными в нем проходными изоляторами составляет 1150 мм.


Шинный ввод сбоку с боковой переходной панелью


Шинный мост с боковыми переходными панелями

Шинный ввод сзади с задней переходной панелью

Шинный мост с задними переходными панелями

Измерительные трансформаторы

Трансформаторы тока

Трансформаторы тока, устанавливаемые в комплектное распределительное устройство КРУ ZETO служат для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления. Для изолирования цепей вторичных соединений от высокого напряжения класса 10(6) кВ, частоты 50 или 60 Гц.

Наименование параметра	ТОЛ-10; Т0П-10-1	ТЛ0-10	Т0Л-НТ3-10
Производитель	C3TT	Электрощит-К	HT3
Количество вторичных обмоток	2; 3; 4	1; 2; 3; 4; 5	1; 2; 3; 4
Номинальное напряжение, кВ	10	10	10
Наибольшее рабочеенапряжение, кВ	12	12	12
Номинальная частота, Гц	50; 60	50; 60	50; 60
Номинальный первичный ток,А	10 - 4000	5 - 3000	5 - 3000
Номинальный вторичный ток, А	1; 5	1; 5	1; 5
Класс точности: - для измерений - для защиты	0,2; 0,2S; 0,5; 0,5S 10P	0,2; 0,2S; 0,5; 0,5S 5p; 10P	0,2; 0,2S; 0,5; 0,5S 5p; 10P
Ток термической стойкости, кА	до 61	до 40	до 40
Ток электродинамической точности, кА	до 152	до 100	до 100

Трансформаторы тока нулевой последовательности

ТТНП предназначены для питания схем релейной защиты от замыкания на землю отдельных жил трехфазного кабеля путем трансформации возникающих при этом токов нулевой последовательности.

Наименование параметра	ТЗЛМ-0,66; ТЗРЛ-0,66; ТЗЛК-0,66	ТЗЛК-0,66; ТЗЛКР-0,66	ТЗЛКР-НТЗ-0,66; ТЗЛК-НТЗ-0,66
Производитель	C3TT	Электрощит-К	HT3
Номинальное напряжение, кВ		0,66	
Номинальная частота, Гц		50; 60	
Ток термической стойкости, кА		140	
Чувствительность защиты (первичный ток, А): - при работе с одним трансформатором - при последов. соединении трансформаторов - при паралел. соединении двух трансформаторов	3 - 25 4 - 30 4,5 - 45	2,5 - 8,5 3,2 - 10,2 4,8 - 12,5	

ТЗЛК-0,66

Т3ЛР-0,66

ТЗЛКР-НТЗ-0,66

Силовые трансформаторы

Трансформаторы напряжения используются для питания:

- измерительной, счетной и контрольной аппаратуры;
- реле или устройств защиты;
- источников вторичных цепей для питания другой коммутационной аппаратуры; это оборудование так же защищено и изолированно от цепей высокого напряжения.

Токовые цепи полностью покрыты эпоксидной смолой, что обеспечивает электрическую изоляцию и высокую механическую прочность.

- с одним изолированным вводом высокого напряжения для включения между нейтралью и фазным проводником в трехфазных системах;
- с двумя изолированными вводами высокого напряжения, для включения между фазными проводниками.

Наименование параметра	ЗНОЛ.06-6 (10) ЗНОЛП(М)-6 (10)		ЗНОЛ-ЭК-6 (10) ЗНОЛП-ЭК-6 (10)		ЗНОЛ-НТЗ-6 (10) ЗНОЛП-НТЗ-6 (10) НАЛИ-НТЗ-6 (10)	
Производитель	C3	TT	Электрощит-К		HT3	
Номинальное напряжение, кВ			6;	10		
Наибольшее рабочеенапряжение, кВ			7,2	; 12		
Номинальная частота, Гц			50;	60		
Номинальное напряжение первичной обмотки, В	6000/V3; 6300/V3; 6600/V3; 6900/V3; 10000/V3; 10500/V3; 11000/V3		6000/V3; 6300/V3; 6600/V3; 10000/V3; 10500/V3; 11000/V3		6000/V3; 6300/V3; 6600/V3; 6900/V3; 10000/V3; 10500/V3; 11000/V3	
Номинальное напряжение основной вторичной обмотки, В	·		100/V3;	110/V3		
Номинальное напряжение дополнительной вторичной обмотки, В			100; 100	/3; 110/3		
Номинальная мощность основной вторичной обмотки, ВА; в классе точности: 0,2 0,5 1 3	30 50 75 200	50 75 150 300	30 50 75 200	50 75 150 300	30 50 75 200	50 75 150 300
Номинальная мощность дополнительной вторичной обмотки в классе точности 3, ВА	200	300	200	300	200	300
Предельная мощность вне класса точности, BA	400	630	400	630	400	630

Трансформаторы собственных нужд

Сухие трансформаторы с литой изоляцией (Тен) мощностью 25-63 кВА класса напряжения 6(10) полностью соответствуют требованиям предъявляемым к этому классу оборудования.

Пожаробезопасные трансформаторы тел идеально подходят для обеспечения питания оборудования собственных нужд ЗРУ. В каче стве диэлектрика использована огнестойкая самогасящаяся смола.

Наименование параметра	тсл
Номинальное высшее напряжение, кВ	6; 10
Номинальное низшее напряжение, В	230; 400; 690
Номинальная частота, Гц	50; 60
Мощность, кВА	25; 40; 63
Охлаждение	естественное; принудительное
Степень защиты	IP00
Температура эксплуатации	-25 +40 дляУЗ -60 +40 для УХЛЗ
Срок службы	30 лет

ЗАО «Завод электротехнического оборудования»

Россия, 182113, г. Великие Луки, Псковская область, пр-т Октябрьский, 79

Телефон: +7 (81153) 6 37 32, 6 37 73

Факс: +7 (81153) 6 38 45

facebook.com/zao.zeto

<u>vk.com/zao.zeto</u>